Fast Pattern Selection for Support Vector Classifiers
نویسندگان
چکیده
Training SVM requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVM training, we propose a fast preprocessing algorithm which selects only the patterns near the decision boundary. Preliminary simulation results were promising: Up to two orders of magnitude, training time reduction was achieved including the preprocessing, without any loss in classification accuracies.
منابع مشابه
Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کاملFast Pattern Selection Algorithm for Support Vector Classifiers: Time Complexity Analysis
Training SVM requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVM training, we propose a fast preprocessing algorithm which selects only the patterns near the decision boundary. The time complexity of the proposed algorithm is much smaller than that of the naive M algorithm
متن کاملAutomatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites
Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کامل